SLM-33306 Advanced Hydrological Systems Analysis


Studiepunten 6.00

Course coordinator(s)ing. G Bier
Lecturer(s)MSc PhD LA Melsen
ing. G Bier
dr. VF Bense
Examiner(s)ing. G Bier
MSc PhD LA Melsen
dr. VF Bense

Language of instruction:


Assumed knowledge on:

HWM-33806 Water and Air flow Numerical Techniques


In this course emphasis is put on the hydrological cycle as a system. Special attention will be paid to the modelling concepts of the different hydrological components, to their characteristic time and space scales (from meters in seconds for open water to meters per year for groundwater), all relative to their importance for the coupling. The classical components to be discussed in this context are: flow in the unsaturated and saturated zone of the subsoil and open water flow. These hydrological processes need to be transformed into physical-mathematical modelling concepts. The choice, presentation and discussion will focus on aspects important for the integration into one system, as e.g. present in the pseudo stationary approach.
During practicals students will implement several modelling concepts in a relatively transparent programming environment (e.g. spreadsheets or the R-studio). They will get acquainted with a commercial software package (GMS-MODFLOW) simulating different components of the hydrological cycle contained in different packages. For both types of models, students need to implement and analyse results for real-world case studies and assess parameter uncertainty for these models.

Learning outcomes:

After successful completion of this course students are expected to be able to:
- apply the principal physical-mathematical descriptions of the different hydrological processes in an integrated manner;
- appraise the strengths and weaknesses of several modelling concepts of the different hydrological processes;
- analyse the hydrological system in terms of physical-mathematical expressions;
- implement coupled-systems equations into computer implementations;
- critically evaluate simulation algorithms, contained in commercial packages, to simulate coupled hydrological systems;
- develop a hydrological model for a real world case study;
- assess parameter uncertainty for the case-study models.


- attending lectures and computer practicals;
- studying course material;
- developing and analysing model implementations;
- creating a presentation on modeling case study.


- assignments during practicals (go/no go);
- presentation on modeling case study (go/no go);
- written examination (questions based on lectures (weight 60%) and computer practical (weight 40%));
- to pass this course both written exam parts require a minimum of 5.0 out of 10.0.


- lecture notes;
- users manuals;
- software manuals.
- (available through Brightspace)

Keuze voor: MEEEarth and EnvironmentMScA: Spec. A - Hydrology and Water Resources6WD