ETE-34306 Energy, Water and Nutrient Cycles in the Built Environment


Studiepunten 6.00

Group work6
Excursion (one day)8
Course coordinator(s)dr. ir. K Kujawa-Roeleveld
Lecturer(s)dr. ir. K Kujawa-Roeleveld JE Dykstra
Examiner(s)dr. ir. K Kujawa-Roeleveld

Language of instruction:


Assumed knowledge on:

ETE-22806 Principles of Urban Environmental Management; ETE-25306 Basic Technologies for Urban Environmental Management.

Continuation courses:

ETE-34806 Resource Quality in the Circular Economy, ETE-32806 Managing Urban Environmental Infrastructure; ETE-33806 Planning and Design of Urban Space.


Our continuously growing cities and (urban) populations are highly and increasingly dependent on external supply of, often overexploited and limited, resources like water, energy, elements. Our modern cities can be characterized by their linear way of consuming high-quality resources and leaving behind waste streams and thus cannot be considered sustainable. The bio-capacities or ecological footprints of these cities and their hinterlands are largely exceeded as resources are used inefficiently as local supply, reuse and recovery potential is not in place. This course focuses on the positive impact, concepts and methodologies of a circular approach: closing resource (water and nutrient) cycles, improving resources chains in accordance with sustainability principles by applying various and suitable technologies to achieve this in practice.

Based on the concept of Urban Metabolism, students are given the opportunity to critically examine and apply several conceptual frameworks that aim at closing resource cycles or making resources chains more sustainable, such as e.g. Urban Harvest Approach, New Stepped Strategy, Trias Energetica, REAP approach, Circularity Ladder. Used streams are not considered as waste but as a source of secondary resources that are returned to either naturally occurring or technological cycles, at the required quality level. Furthermore, (technical) options and concepts to locally supply and recover/reuse resource streams are introduced and evaluated in regard of possible self-sufficiency and reuse/recovery potential based on the assumed prior knowledge (ETE 25306 Basic Technologies for Urban Environmental Management or similar). In addition, assessments and case studies are provided of situations by practitioners from the field and scientists from related academic fields, where the application of individual technologies and their appropriate combinations ensure sustainability under given local conditions regarding scale, climate and rural-urban typology.
The course consists of 2 main parts: a) lectures, in which i) methodological concepts to analyse and evaluate resource flows and technological concepts are introduced, ii) possible technical concepts for closing resource cycles are discussed and iii) example cases for closed resource cycles are highlighted and b) a group assignment that challenges students to i) analyse and assess resources flows in an urban setting and ii) propose, evaluate and compare feasible measures to improve sustainability of the current practices related to energy, water and nutrient management. Furthermore, field visits to cases with (partially-)closed cycles are incorporated to show the applications of the lectures and assignment content in practice.

Learning outcomes:

After successful completion of this course students are expected to be able to:
- demonstrate understanding of the importance of closing/improving urban resource cycles/chains: energy, water and nutrients at various urban scales and typologies;
- perform baseline assessment of a given urban setting using mass and energy balances and technology assessment;
- apply conceptual approaches for a given case that aim at closing urban resource cycles;
- select and evaluate the opportunities and limitations of various technologies for closing urban resource cycles in a given context;
- make a design of a system to close energy, water and nutriënt cycles/chains at various scales;

- evaluate new design in relation to the baseline using pre-defined sustainability criteria and indicators.


- lectures: including four thematic blocks: i) methodological frameworks for analysing, evaluating and designing closed/sustainable resource cycles/chains, ii) sustainable water cycle, iii) sustainable energy chain and iv) the sustainable nutrient cycle. Lectures will be provided (next to the course lecturers) by the guest lecturers from different WU chairs and universities to show the multi- and transdisciplinarity of the Circular Economy and representatives of companies and research institutes applying sustainability concepts and implementing sustainable, circlar technologies. The lectures will be concentrated mainly in the first half of the course (first 1.5 weeks);
- group assignment: a group assignment to design a closed/sustainable/improved energy, water and nutrient cycle/chain through integration of various technologies and application of methodological framework to realize a viable system, including a critical analysis and evaluation of options in accordance with sustainability criteria as applied to a particular setting;
- study visits: 1 full day excursion: sustainable building or a city district, renewable energy application in a building or a district, water re-use, etc.


- written, closed book examination (40%);
- group assignment (60%);
- a pass mark (>5.5) is required for each part.


Lecture hand-outs in Brightspace.
Selected scientific papers and reports in Brightspace.

Keuze voor: MUEUrban Environmental ManagementMSc3WD
MBSBiobased SciencesMScC: Spec. C - Biobased and Circular Economy3WD