MOB-31303 Molecular Development


Credits 3.00

Teaching methodContact hours
Practical extensively supervised16
Course coordinator(s)prof. dr. T Bisseling
Lecturer(s)prof. dr. T Bisseling
dr. ir. R Geurts
Examiner(s)prof. dr. T Bisseling

Language of instruction:


Assumed knowledge on:

BIC-20306 Cell Physiology and Genetics, MOB-20306 Gene Technology


Multicellular eukaryotes are in general formed from a fertilized egg and, by division and a differential use of the genetic information, a multicellular organism is formed composed of different cell types that are present in a specific pattern. One of the most important discoveries in biology is the observation that most animals, although they can have very different forms, share sets of genes that are key regulators of the body plan; the developmental toolkit. Within this toolkit 2 kinds of regulators are present: transcription factors and elements of signal transduction systems. The most detailed knowledge concerning this toolkit has been obtained from molecular genetic research on Drosophila. Therefore the molecular mechanisms controlling Drosophila development will be described first. Students will also have to build models of developmental pathways, using computer simulations as a tool. Subsequently, the insights obtained with this system about the developmental toolkit will be applied to other systems like mouse, human, xenopus and zebrafish. In addition to pattern formation during embryogenesis attention will be given to stem cells and their potential to form post-embryonically differentiated cells as well as the mechanisms by which cells loose their potency to differentiate into other cell types. This part of the lectures will be put in the context of medical applications involving the cloning of organisms and the in vitro formation of specialised cell types and organs.

Learning outcomes:

At the end of the course, the student is expected:
- to have insight in the molecular basis of pattern formation and differentiation during animal development, and to understand terms like morphogenetic determinants, gradients of morphogens, transcriptional regulation of maternal and zygotic genes;
- to be able to construct quantitative models of a developmental process based on experimental data;
- to be able to read and interpret data in primary literature in this field.


Lectures, ICT modules, reading literature, discussions on specific topics.


The final mark will be based on a written examination with open questions.


Reader and website.

Restricted Optional for: MBTBiotechnologyMScA: Cellular/Molecular Biotechnology4AF
MBTBiotechnologyMScC: Medical Biotechnology4AF
MMLMolecular Life SciencesMScA: Biomedical Research4AF
MMLMolecular Life SciencesMScB: Biological Chemistry4AF
MNHNutrition and HealthMScC: Molecular Nutrition and Toxicology4AF