PCC-33808 From Molecule to Designer Material

Course

Credits 8.00

Teaching methodContact hours
Lecture28
Group work36
Independent study0
Course coordinator(s)dr. TE Kodger
dr. ir. JHB Sprakel
Examiner(s)dr. TE Kodger
dr. ir. JHB Sprakel

Language of instruction:

EN

Continuation courses:

Specialisation courses in Molecular Life Sciences

Contents:

The use and availability of materials has shaped our society for centuries. From the bronze and iron ages of the past, to the silicon age of the present, material science has driven technological and societal changes. Materials of the present are increasingly formed from polymers as building block. This course will present an inspiring overview of the state-of-the-art in designer polymeric materials, ranging from the latest advances in DNA nanotechnology and protein engineering, the use of biobased building blocks to mechano-biology inspired mechano-chemistry and ultratough polymers and adhesives. For all of these topics, we will seek inspiration in Nature, to learn how Nature designs its functional (nano)materials and extract design principles to work towards synthetic materials with new and unique properties,  designed from the bottom up. To do so, this interdisciplinary course, will encompass aspects from polymer chemistry, material physics, engineering, biotechnology and biology. In addition to the lectures by teachers working at the frontiers of this field, you will work in groups on designing your own material of the future. A special focus will be put on communicating your design to the world. 

Learning outcomes:

After successful completion of this course students are expected to be able to:
- understand design strategies developed by Nature to build functional cellular structures;
- describe and apply basic material design concepts used in biological science and material science, such as structure-function relationships;
- describe and apply molecular design strategies, including genetic engineering, controlled polymerisations, biomass conversion and colloid synthesis approaches;
- identify how material science can contribute to the societal challenges of today, including sustainability issues, biobased economy and green energy;
- evaluate the challenges of the future at the interface between biological science and material science using the knowledge of bottom-up design strategies;
- create a design for new materials from the molecular level up using the knowledge of design concepts and societal challenges;
- communicate your scientific work to the world using new media;
-being receptive to influences and insights provided by group members.

Activities:

- lectures;
- guest lectures;
- material design study in groups;
- communicating work to the world using new media.

Examination:

- written exam 2x (total 30%);
- group report (60%).
- participation during group design study (10%)

Each component needs a minimum mark of 5.5 to pass. Marks for components will remain valid for 3 years.

Literature:

To be provided during the course.

ProgrammePhaseSpecializationPeriod
Compulsory for: MMLMolecular Life SciencesMSc1WD