BIC-10306 Practical Biological Chemistry


Credits 6.00

Teaching methodContact hours
Independent study
Course coordinator(s)prof. dr. SC de Vries
dr. LMC Nitsch
Lecturer(s)dr. ir. R Heidstra
dr. C Albrecht
WAM van den Berg
JA Boeren
dr. ir. EHM Limpens
dr. ing. JW Borst
dr. HGJM Franssen
dr. LMC Nitsch
dr. VA Willemsen
R Spruijt
dr. LH Beun
Examiner(s)dr. LMC Nitsch
dr. ir. EHM Limpens
prof. dr. WJH van Berkel

Language of instruction:



Note: This course has a maximum number of participants. The deadline for registration is one week earlier than usual. See Academic Year.( -> Registration for Courses.

This introductory practical course provides basic knowledge and skills in molecular biology and biochemistry. Lectures provide the theoretical background of the applied techniques and the experiments to be performed. Subjects are: techniques of gene cloning, structure and function of nucleic acids and proteins, structure and expression of eukaryotic genes, electrophoresis, PCR, hybridization, spectrophotometry and fluorimetry. The practical course consists of a molecular-biological and a biochemical part.
The molecular-biological part is dedicated to: isolation and analysis of DNA, RNA and proteins, both from prokaryotes (E. coli) and eukaryotes (tomato); construction of a physical map of a plasmid by enzyme digestions and electrophoresis; cloning; detection techniques like PCR and the use of computer programs and internet in the analysis of structure and function of DNA (bio-informatics). The gene encoding one of the Rubisco proteins will serve as a model in part of the experiments. The biochemical part comprises the following subjects: quantitative clinical enzyme assays (uric acid quantitation, enzymatic assay for a heart-attack), detection of isoenzymes with isoelectric focussing (tissue analysis), chemo-enzymatic browning of fruit and vegetables, a study of the reaction mechanism of an enzyme with kinetics and computer graphics, an introduction to the discovery of cellular protein complexes with proteomics and a computer-assisted design, execution and analysis of a fluorimetric enzyme activity assay. At the end of the practical course, students describe their results in short reports. The practical course is concluded with an exam. The final mark is composed of a mark for performance during the practicals (judgment of assistants), a mark for the written reports (judgment of assistants) and the mark for the exam.
The maximal capacity for this course is 120 students, both in periods 4 and 5. Students for which this course is compulsory or restricted optional will be admitted with priority.

Learning outcomes:

After successful completion of this course students are expected to be able to:
- describe general genome structure and gene organization, transcription and RNA processing in eukaryotes
- understand the principles and explain the use of basic molecular techniques to study genes, such as restriction digestion, agarose gel electrophoresis, cloning, Southern blotting and Western blotting, (RT)-PCR and sequencing
- apply basic techniques in molecular biology, such as DNA, RNA and protein isolation, (RT)-PCR, restriction enzyme digestions, agarose gel electrophoresis, cloning and Western blotting
- understand and apply the principles of absorption- and fluorescence spectroscopy, immunology, electrophoresis, polarography and proteomics
- perform enzymatic assays, interpret data on enzyme catalysis, and relate the results to clinical and nutrition related questions
- use DNA- and protein analysis software (BLAST, 3D-protein structure viewer, proteomics databases)
- calculate and interpret independently the results of their experiments
- read a scientific article (related to enzyme function) and write short reports.


- attending lectures;
- studying readers;
- performing experiments;
- analysing results and writing reports.


The Biochemistry and Molecular Biology parts each count for 50% of the final mark. The marks for the Biochemistry and Molecular Biology parts are both calculated from performance and dedication during the practicals (33.33%), the reports on the experiments (33.33%) and a test with both multiple choice and open questions (33.33%). A mark for one of the tests between 4.5 - 5.4, all other parts having awarded with marks >5.5, results in 5 as a final mark. If the mark for one of the tests is < 4.5, all other parts having awarded with marks > 5.5, the mark for the test will be the final mark. Partial marks remain valid for 6 years.


Manual practical course Biological Chemistry, Molecular Biology part (Laboratory of Molecular Biology).
Manual practical course Biological Chemistry, Biochemistry part (Laboratory of Biochemistry).
Griffiths, A.J.F.; []. (2008). Introduction to genetic analysis. 9th ed. New York, US: Freeman. 839p. ISBN 9780716799023.
Berg, J.M.; Tymoczko, J.L.; Stryer, L.; Gatto, G.J. (2012). Biochemistry. 8th ed. New York [etc.], US: Freeman. 1098p. ISBN 1429276355. Blackboard: Powerpoint presentations of the lectures.

Compulsory for: BBIBiologyBScC: Human and Animal Health Biology4WD
BBIBiologyBScB: Organismal Adaptation and Development4WD
BBIBiologyBScA: Cell and Molecular Biology4WD
BASAnimal SciencesBScB: Biological Functioning of Animals5AF
BMLMolecular Life SciencesBSc5AF
BPWPlant SciencesBSc4WD
Restricted Optional for: BVGNutrition and HealthBSc4WD